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Secondary instability of flow in a curved duct of 
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Experiments and simulations of a travelling wave state of incompressible Newtonian 
flow in a curved duct of square cross-section are presented. The travelling wave mode 
develops from the well-documented steady four-cell flow state and is characterized by 
oscillations of the two Dean vortices near the centre of the outer wall. 

The oscillations were induced by a carefully positioned pin at 5" from the inlet of 
the curved section along the symmetry line of the cross-section. It was shown that 
the travelling wave state is characteristic for curved duct flow and that the pin made 
it possible to observe the oscillations within the 270" long curved duct. Travelling 
waves were observed at flow rates above Dn = 170 (Dn  = Re/(R/a)'/*, where Re is 
the Reynolds number, R is the radius of curvature of the duct and a is the duct 
dimension. The curvature ratio, R/a, is 15.1). 

If no other disturbances are imposed, the oscillations are the result of the selective 
amplification of random disturbances in the flow, leading to a broad frequency 
spectrum. The travelling wave was found to lock in to an imposed periodic disturbance 
at a selected frequency. The flow structure of the locked state was investigated in 
detail, using flow visualization and a one-component laser Doppler anemometer to 
measure streamwise or spanwise velocities. Direct numerical simulations using the 
package CFDS-FLOW~D are in very good agreement with the experiments and confirm 
the existence of a fully developed, streamwise-periodic travelling wave state. 

The inflow region between the two Dean vortices, which transports low-speed 
fluid away from the outer wall, creates strongly inflectional spanwise profiles of the 
streamwise velocity. Similarities with twisting vortices in a curved channel and sinuous 
oscillations of Gortler vortices show that the travelling waves observed here result 
from a secondary shear instability of these spanwise inflectional profiles. 

1. Introduction 
Since the early work by Dean (1927, 1928), most studies of flow in curved pipes 

and ducts have been concerned with steady flow phenomena. Review articles are 
available by Berger, Talbot & Yao (1983), Nandakumar & Masliyah (1986) and It6 
(1987). 

The solution structure of steady fully developed or two-dimensional flows in a 
curved duct of square cross-section was determined numerically by Winters (1987) 
and confirmed experimentally by Bara, Nandakumar & Masliyah (1992). For a 
loosely coiled duct, the main branch of two-cell flows is connected to a four-cell 



388 P. A. J .  Mees, K .  Nandakumar and J .  H .  Masliyah 

branch through two folds at Dn = 131 and Dn = 113. The two-cell state consists 
of two counter-rotating Ekman vortices that are the result of the pressure gradients 
along the top and bottom walls. As a result of the primary instability, that is of 
centrifugal nature, two small Dean vortices are formed near the centre of the outer 
wall, which gives rise to a four-cell flow state. This four-cell state is unstable with 
respect to asymmetric disturbances, but was observed by Bara et al. (1992) because 
asymmetric disturbances in their experiment were small. 

Winters (1987) calculated an isolated branch of two-cell and four-cell flows above 
Dn = 191. The four-cell state is unstable, while parts of the two-cell branch are stable. 
Between Dean numbers of 131 and 191 no stable two-dimensional solutions exist. 
Sankar, Nandakumar & Masliyah (1988) predicted steady spatial oscillations between 
two-cell and four-cell flows at Dean numbers above 131. These spatial oscillations 
were recently confirmed experimentally by Mees, Nandakumar & Masliyah (19964. 

Taylor (1929) had observed non-turbulent oscillations of two-cell flow in a helical 
pipe using dye visualization. Sinuous oscillations near the inner wall of a helical pipe 
were also observed by Sreenivasan & Strykowski (1983) and Webster & Humphrey 
(1993), who suggest that these are the result of an instability of the secondary jet 
coming off the centre of the inner wall. Oscillations in curved ducts of square 
cross-section were observed by Tsuda & Ohba (1984), Ohba, Tsuda & Takagi (1986), 
Belaidi, Johnson & Humphrey (1992) and Arnal, Goering & Humphrey (1992). The 
oscillations described in this paper show no similarities with earlier observations of 
oscillations in curved ducts, but have much in common with twisting vortices in 
curved channel flow and sinuous oscillations of Gortler vortices along a concave wall. 

Two kinds of oscillating vortices have been observed in curved channel flow: 
short wavelength twisting vortices and long-wavelength undulating vortices (Kelleher, 
Flentie & McKee 1980; Finlay, Keller & Ferziger 1987, 1988; Ligrani & Niver 1988; 
Bottaro, Matsson & Alfredsson 1991; Matsson & Alfredsson 1992, 1993; Bottaro 
1993; Le Cunff & Bottaro 1993). Several authors have shown that twisting vortices 
are the result of a shear instability of inflectional spanwise profiles of the streamwise 
velocity (Finlay et al. 1988; Matsson & Alfredsson 1992, Le Cunff & Bottaro 1993). 

Two oscillating modes have also been observed in Gortler flow: a sinuous mode 
(e.g. Bippes & Gortler 1972; Bippes 1972) and a varicose mode (e.g. Ito 1980, 1985; 
Aihara & Koyama 1981). The sinuous mode has been related to spanwise inflectional 
profiles of the streamwise velocity (Swearingen & Blackwelder 1981 ; Floryan 1991 ; 
Yu & Liu 1991; Liu & Domaradzki 1993). 

2. Experimental system 
The curved section of the apparatus, which was 270" long, had a 1.27 cm square 

cross-section, and a curvature ratio, R, = R/a, of 15.1 (figure 1). The cross-section 
coordinates were non-dimensionalized as x = x ' /a  and z = z' /a.  

A detailed description of the experimental setup is given by Mees, Nandakumar 
& Masliyah (1996a). Added to this system was a forcing mechanism, consisting of 
a peristaltic pump without its casing. The three rollers of the pump periodically 
compressed the hose that leads the water to the stilling chamber. The travelling 
wave locks in to the small periodic disturbance that was created by the forcing. The 
distance over which the hose was compressed by each of the rollers was adjustable. 

The experimental techniques used were flow visualization with laser fluorescent dye 
and a one-component laser Doppler anemometer to measure streamwise or spanwise 
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FIGURE 1. Curved duct geometry. 

velocities. Secondary flow patterns were visualized using a laser light sheet. Streamwise 
flow patterns were made visible by illuminating a 10"-20" long section from above. 

The flow conditions at the inlet of the curved section are described in detail by 
Mees (1994). According to the experimentally determined correlation by Goldstein & 
Kreid (1967), the flow in the 1 m long straight inlet section reaches a fully developed 
state up to a Dean number of 225. This was confirmed experimentally by Mees (1994). 
At higher flow rates, the inlet profiles are less and less developed, as is indicated by 
a growing flat region in the centre of the velocity profile. 

3. Travelling wave experiments 
The travelling wave state was induced by inserting a pin at 5" from the inlet of 

the curved section. The pin was inserted through the outer wall along the horizontal 
centreline, z = 0. Pin sizes of 33, 29, 27, 26 and 25 gauge were used with diameters 
of 0.2, 0.33, 0.41, 0.46 and 0.5 mm, respectively. 

Side-view visualization of a typical travelling wave is shown in figure 2 ( a ) ,  at 
Dn = 220 (Dn = Re/ (R /a ) ' / 2  where Re is the Reynolds number). The photographs 
were taken at different moments in time. In this case the time dependence starts 
around f3 = 140". The oscillations of the flow are quite irregular. The travelling wave 
state seems to consist of a series of wave bursts, or packets, that grow and blend 
together as they travel downstream. One such a wave packet is visible in figure 2 ( a )  
between 8 = 170" and 0 = 175". The existence of these wave packets suggests that 
the flow is convectively unstable. The state of a convectively unstable system is 
determined by small disturbances that are selectively amplified in the direction of the 
flow. 

In a moving reference frame, the dye pattern widens slowly while it is convected 
downstream. It is important to realize that the dye pattern in the photographs does 
not necessarily represent the secondary flow field. Because the dye moves at a different 
speed than the wave, the dye pattern will change with streamwise position, even if 
the flow field is fully developed or streamwise periodic. 

The time series of cross-section visualizations in figure 3 shows that the two Dean 
vortices are oscillating while the large Ekman vortices remain relatively quiescent. A 
characteristic feature of the wavy flow is the oscillating inflow region between two 
Dean vortices, clearly visible in figure 3. The stagnation point near the centre of 
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Streamwise position, 19 (deg.) 

FIGURE 2.  Side-view flow visualization of a developing travelling wave without forcing (a) and with 
forcing at 6.6 Hz (h).  Dn = 220, 29 gauge pin. Dye was injected continuously. 
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FIGURE 3. Cross-section flow visualization showing oscillations at Dn = 220 and 6' = 200" with a 
29 gauge pin. 

the outer wall does not move. The centres of the Dean vortices seem to perform an 
almost circular motion with the upper Dean vortex rotating counterclockwise and the 
lower Dean vortex rotating in a clockwise direction. 

The qualitative features discussed so far were quantified using detailed velocity 
measurements. Frequency analysis of the streamwise velocity fluctuations was used 
to determine which modes are present. Velocity fluctuations were measured at 61 
positions along a spanwise line at x = 0.27 from z = -0.24 to z = 0.24 (& 3 mm from 
the centreline). Strong velocity fluctuations are found in this region. All spectra of 
the unforced system show a broad maximum in the 5-8 Hz range, depending on the 
flow rate. The average frequency spectrum for a Dean number of 220 and 19 = 180" 
is shown in figure figure 4(a).  The broadband character of the frequency spectra 
confirms the convective instability of the flow. 

One of the objectives of this study was to characterize the structure of the wavy 
flow. It is therefore necessary to study a single mode, rather than a combination 
of modes in a wide range of frequencies. Because the flow is very sensitive to 
upstream disturbances, a selected mode can be given an advantage over other modes 
by introducing a periodic disturbance that is larger than the disturbances created 
by random noise. This periodic disturbance was created by slightly compressing 
the Tygon hose that leads the water to the stilling chamber, using the rollers of a 
peristaltic pump. The velocity fluctuations that are caused by the forcing are two 
orders of magnitude smaller than the velocity fluctuations that are the result of the 
travelling wave. Depending on the forcing frequency and the forcing intensity, the 
excited mode can become the dominating mode, even if this is not the mode with the 
highest growth rate. Both in the unforced and the forced system the development of 
travelling waves is the result of small disturbances in the flow. There is no essential 
difference between the two, except for the nature of the disturbances. 
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FIGURE 4. Averaged frequency spectra of streamwise velocity without forcing (a)  and with forcing 
(b)  at Dn = 220, 0 = 180", x = 0.27 and with a 25 gauge pin. 

The average frequency spectrum with forcing at 6.82 Hz but otherwise identical 
conditions as figure 4 ( a )  is shown in figure 4 (b ) .  The energy of the mode correspond- 
ing to the forcing frequency is much higher than the energy of any other mode. The 
harmonics are the result of the structure of the flow and do not represent separate 
modes. The energy of other modes is much lower than in the unforced system. This 
suppression is the result of nonlinear interactions between different modes. The total 
wave power does not change significantly as a result of the forcing. The forcing 
merely causes a shift of energy from a wide range of modes to a single mode. A 
forcing frequency of 6.82 Hz is close to the fastest growing mode, however anywhere 
in the 3-10 Hz range the wave can lock in to the forcing frequency. 

Side-view flow visualization of the forced system is shown in figure 2(b). The dye 
pattern is much more regular than in the unforced system and wave packets can 
be distinguished. Although the dye pattern changes continuously in the streamwise 
direction, over a small streamwise distance the pattern is shift-and-reflect symmetric. 
This means that the pattern is invariant over a reflection in the centreplane, combined 
with a spatial shift over half a streamwise wavelength. 

The spatial development of the flow oscillations was quantified by measuring 
streamwise velocity fluctuation profiles at x = 0.27 and -0.24 < z < 0.24 for a series 
of streamwise positions. The total wave power and the power of the fundamental and 
first and second harmonic components (1.56 Hz wide bands) are plotted in figure 5. 
From 6' = 80" to 0 = llo", the wave power increases at a linear rate. Nonlinearities 
start to dominate the wave development around 6' = 120°, at which point the wave 
power begins to saturate. After 8 = 170" the wave power does not change much with 
streamwise position. In this region the time-averaged flow field seems to be axially 
invariant, and this state will be called the 'fully developed wave' state. 

4. Role of the pin in inducing time dependence 
Flow visualization shows that the travelling wave state develops from a steady 

four-cell flow. Hence, in order to find a travelling wave state, both a steady four-cell 
flow state and disturbances that destabilize this four-cell state have to be present. 
The pin plays an important role in both these phenomena. Bara et al. (1992), who 
studied the development of steady flows up to D n  = 150, showed that the pin reduces 
the streamwise length needed to reach a fully developed steady four-cell state. By 
measuring how long it takes a sudden change in forcing frequency to reach the 
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FIGURE 5. Spatial development of the streamwise velocity amplitude (0, total amplitude; +, 
fundamental; 0, first harmonic; x, second harmonic). Dn = 220, x = 0.27, 25 gauge pin, average 
forcing frequency of 6.71 Hz. 61 samples (-0.24 < z < 0.24) of 512 measurements sampled at 
100 Hz. 

downstream position at (3 = 180", it was determined that the disturbances that the 
wave locks in to are created by the pin. 

Without inserting the pin no oscillations were observed within the first 270" for 
170 < Dn < 260 and one can only speculate about whether spontaneous oscillations 
would occur further downstream or not. Without the pin a four-cell state will develop, 
although somewhat further downstream (Bara et al. 1992). It seems likely that without 
the pin, random disturbances in the flow will grow and eventually destabilize the four- 
cell flow, although this may take much longer. This suggests that in a longer apparatus 
travelling waves would form spontaneously. Some experimental evidence exists for 
these spontaneous oscillations : without inserting the pin, oscillations develop near the 
end of the duct for Dn around 600. Highly unstable flow and very fast oscillations 
make what seem like naturally occurring travelling waves very difficult to study. 

Vortex shedding was observed in the wakes behind all pins used in this study. In 
order to confirm that the travelling wave is a solution of curved duct flow, and not 
the result of wake oscillations, the onset and frequency of the wake oscillations and 
the travelling wave state were compared. 

The flow rate at the onset of vortex shedding was determined for each of the five 
pin diameters. In each case the onset of vortex shedding took place at a flow rate 
above the onset of travelling waves. For example, onset of vortex shedding behind 
the 33 gauge pin took place at Dn = 380, while travelling waves were induced by this 
pin at a Dean number as low as 180. 

Other experiments were conducted to compare the frequencies of the travelling wave 
and the vortex shedding. The shedding frequency for a 25 gauge pin at Dn = 220 was 
determined at 26.2 Hz, which is much higher than the wave frequency of 7 Hz at this 
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Direction Min. (m) Max. (m) grid 1 grid 2 grid 3 
spanwise -0.00635 0.00635 32 46 58 

radial 0.18561 0.19831 22 32 40 
streamwise 0.0 0.012731 100 128 160 

TABLE 1. Geometry and grid dimensions. 

flow rate. Finally, the wave frequency at flow rates between Dn = 170 and Dn = 260 
does not depend on the pin diameter, while the wake frequency depends strongly on 
the pin diameter (Schlichting 1979). These results show that the wave is not the result 
of wake oscillations. 

5. Direct numerical simulations 
Three-dimensional and time-dependent simulations of the fully developed travelling 

wave state at a Dean number of 220 were performed using the commercial CFD 
package CFDS-FLQW~D. First the simulation strategy will be discussed, followed by the 
geometry and the solution method. In the next section the simulation results will be 
compared to the experiments. The simulations will also be used to analyse the flow 
structure and the instability mechanism that causes the travelling waves. 

Because of the very fine grid resolution that is required to resolve the travelling 
wave state, the streamwise extent of the computational domain had to be kept to 
a minimum. This was accomplished by imposing periodic boundary conditions in 
the streamwise direction. This streamwise periodicity creates a continuous feedback 
between the outlet and the inlet of the computational domain, which destroys the 
convective nature of the flow. Although this changes the dynamics of the system, the 
structure of the fully developed periodic flow, which is the objective of this simulation, 
is not affected. 

Streamwise-periodic boundary conditions also change the stability of the steady 
four-cell flow state from which the travelling waves develop. Because steady four-cell 
flow is unstable with respect to asymmetric perturbations, asymmetries that are caused 
by round-off errors are amplified and eventually cause the flow to break down. This 
breakdown is an asymmetric process, during which the two Dean vortices move either 
up or down and fold up into one of the Ekman vortices. The travelling wave state can 
therefore only be modelled in a streamwise periodic simulation if asymmetric breakup 
is prevented, without making the development of travelling wave modes impossible. 
This was achieved by imposing shift-and-reflect symmetry. It will be shown in the next 
section that the fully developed travelling wave state is shift-and-reflect symmetric. 
Imposing shift-and-reflect symmetry does not therefore affect the travelling wave 
solution, but it does stabilize steady four-cell flow because the breakdown of steady 
four-cell flow is not shift-and-reflect symmetric. 

The dimensions of the geometry are given in table 1. The spanwise and radial 
dimensions correspond to the dimensions of the experimental apparatus. The stream- 
wise wavelength was fixed at 3.8", which is close to the experimentally observed 
wavelength with forcing at 6.6 Hz (figure 2b) .  The wave frequency was allowed to 
develop naturally. Three different grids were used. The cells are uniformly distributed 
in the streamwise direction. In the spanwise and radial directions geometric compres- 
sion was used to increase the grid resolution near the centre of the outer wall, where 
the flow oscillations are most prominent. 
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CFDS-FLOW~D solves the fully elliptic, three-dimensional, time dependent Navier- 
Stokes equation, using a control volume approach. Hybrid differencing was used to 
model the convective terms of the transport equations. Block Stone's method was used 
to solve the linearized difference equations for the velocity components in the inner 
iteration. The SIMPLEC algorithm (Patankar 1980; Van Doormal & Raithby 1984) was 
used for the pressure coupling of the outer iteration with under-relaxation factors for 
the velocity components of 0.8. The time-stepping procedure used Crank-Nicolson 
differencing. Each time step was considered to be converged when the residual mass 
flow over the entire domain was less than lop6. Simulations were carried out on IBM 
RS/6000 model 560 computers with 256 and 512 Mb. 

The simulations were either started from a slightly perturbed steady four-cell 
solution, or from the fully developed wave state calculated with a coarser grid. Using 
the finest grid, a fully developed wave state was reached after 8 s of real time. This 
simulation took 235 Mb of RAM and the CPU time for one time step of 0.0025 s 
was about 65 minutes, resulting in a total simulation time of over four months. 

The frequency of the travelling wave that was selected by the temporal simulation 
with grid 3 was 6.45 Hz, which is very close to the 6.6 Hz of the experiment that the 
fixed wavelength for the simulation was based on. 

6. Flow structure 
One of the main objectives of this study of travelling waves in a curved square duct 

was to characterize the structure of the wavy flow. Experimentally, this was done by 
measuring amplitude and phase distributions. Numerical simulations provide further 
insight into the flow structure, in particular the vorticity field. The experimental and 
numerical investigation focused on the fully developed travelling wave state at a Dean 
number of 220. All simulation results in this section were calculated with the finest 
grid. 

6.1. Amplitude and phase distributions 

A velocity signal can be represented in the frequency domain as a sum of cosine 
functions, each with their own amplitude and phase. Since velocity signals in the 
forced system contain only a few frequency components, the fluctuating velocity field 
can be described very efficiently by the amplitude and phase of these components. The 
streamwise velocity fluctuations are strongest near the inflow region, and fluctuation 
characteristics change much more quickly in the spanwise direction than in the radial 
direction. Therefore, velocity fluctuations were measured along a spanwise line at 
x = 0.27. Amplitude and phase distributions show how the amplitude and phase of a 
certain frequency component vary with the spanwise position along this line. 

The phase of the velocity fluctuations is only meaningful if it is defined relative 
to a phase reference. Phase distributions calculated with the forcing pump as phase 
reference were fairly noisy. Internal phase referencing was also used, by calculating 
the phase difference between different frequency components of the same velocity 
signal. Internal phase referencing produced much more reproducible results. 

Velocity fluctuations were measured at a Dean number of 220 and 8 = 180". At 
this position and flow rate the travelling wave has reached a fully developed state 
(figure 5). Typical amplitude and phase distributions of the streamwise velocity are 
shown in figure 6. Measured amplitude distributions are usually slightly asymmetric as 
a result of small disturbances in the flow. No systematic asymmetries were observed. 
The amplitude of the fundamental frequency reaches zero in the centre of the duct, 
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FIGURE 6. Streamwise velocity amplitude and phase distributions of fundamental and first harmonic 
(a,b).  Time series and spectra illustrate the shift of power between the fundamental frequency and 
the first harmonic (c-h). Dn = 220, 6, = 180", x = 0.27, 25 gauge pin, forcing at 6.5 Hz, 61 samples 
(-0.24 < z < 0.24) of 2048 measurements sampled at 100 Hz. 

with maxima on both sides of the horizontal centreline. The first harmonic has a 
maximum in the centre and goes to zero around z = k0.05 with secondary maxima 
around z = f O . l .  

The shift of power between the fundamental frequency and the first harmonic 
near the centre of the duct is illustrated in figure 6(c-h). At z = 0.008, close to 
the centreline and at the minimum of the fundamental amplitude, the first harmonic 
dominates the signal. At z = 0.024 the fundamental and the first harmonic are equally 
strong and at z = 0.071, where the fundamental frequency is at its maximum, the 
signal is dominated by the fundamental. The time series on the other side of the 
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FIGURE 7. Streamwise velocity amplitude distribution (a)  and phase distribution ( h )  of the 
fundamental component. Parameters as in figure 6. 

centreline show the same trends. The phase jump at the centreline in figure 6 ( a )  is 
associated with the fundamental frequency and will be explained in 96.2, where the 
symmetry of the flow is discussed. 

Amplitude distributions of the streamwise velocity and distributions of the phase 
difference with the forcing signal are shown in figures 7 and 8 for the fundamental 
and first harmonic respectively. All phase differences are expressed as a fraction of 
the fundamental wavelength. Because of the arbitrary distance between the pin, where 
the forcing disturbances are created, and the position where the velocity is sampled, 
this phase difference is relative. 

The phase differences with the forcing signal show a significant random fluctuation 
which makes it difficult to detect phase jumps. The uncertainty in the phase is 
probably caused by the relatively large distance between the pin and the position 
where the phase is measured, in this case at 6' = 180". The forcing pump determines 
the phase of the disturbance that is created near the inlet of the duct. It takes the 
disturbance about 50 wavelengths, or 7 s, to travel to the position where the velocity 
is measured. Hence, the velocity and forcing signals at any point in time are not 
directly related. Because of the delay, small fluctuations in the forcing frequency or 
flow rate cause large uncertainties in the phase difference between the forcing signal 
and the velocity measured at 6' = 180". 

There is a n phase jump of the fundamental component in the centre of the duct. 
The first harmonic has two phase jumps of i n  each at about z = +0.05. The solid 
lines in figures 7 and 8 are the results of the CFDS-FLOW~D simulation. The predicted 
phase distributions agree well with the experiments, especially with the uncertainty of 
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FIGURE 8. Streamwise velocity amplitude distribution (a) and phase distribution (b)  of the first 
harmonic. Parameters as in figure 6. 

Experiment grid 3 grid 2 grid 1 
Total power 8.21 7.35 5.95 3.58 
Fundamental 7.23 6.76 5.60 3.48 
1st Harmonic 0.696 0.551 0.329 0.0971 

2nd Harmonic 0.0387 0.0299 0.0127 0.00212 

TABLE 2. Experimental and simulated wave power of the streamwise velocity (mm2 sP2). 

the measured phase in mind. The amplitude distributions show the right trends, but 
are slightly lower than the experimental distributions. The experimental wave power 
of the streamwise velocity and the wave power predicted by the three simulations are 
given in table 2. Although the simulated wave power increases significantly with grid 
refinement, all simulations show qualitatively very similar oscillations of the Dean 
vortices. The amplitude of these oscillations increases with increasing grid resolution. 
It is likely that the amplitude will increase even more with further grid refinement, 
but this has not been done due to the large amount of computer memory and CPU 
time needed for such a simulation. 

The phase differences between different frequency components of the velocity are 
much more reproducible than phase differences with the forcing signal. Shown in 
figure 9 is the phase difference between the fundamental and the first harmonic. The 
phase jumps are much more distinct than before. The simulated phase distribution 
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FIGURE 9. Phase difference between the fundamental and the first harmonic of the streamwise 
velocity. Parameters as in figure 6. 

is in good agreement with the experiments. The phase differences with the second 
harmonic (not shown) are also in good agreement with the experiment. 

Amplitude and phase distributions were also measured for the spanwise velocity. 
The amplitude of the fundamental component has a single maximum at the centreline, 
while the first harmonic is zero in the centre with maxima on either side. There are 
no phase jumps in the fundamental. The first harmonic has a in phase jump in 
the centre. All simulated amplitude and phase distributions show good qualitative 
agreement with the experiments. 

6.2. Symmetry 

The symmetries of a system are those transformations that leave that system ap- 
parently unchanged. The symmetries of the apparatus are considered first, because 
performing any of these symmetry transformations to a solution of the flow must 
lead to another valid solution, although not necessarily the same one. 

Because the Dean problem is an open system with developing flow, it does not 
have rotational symmetry in the streamwise direction. However, an idealized system 
consisting of an infinitely long curved duct without entrance and exit regions does 
have rotational symmetry, just like Taylor-Couette flow. Another symmetry of the 
real and idealized apparatus is reflect symmetry around the centreplane, z = 0. 
Finally, because the apparatus does not change with time, it possesses all possible 
time symmetries. 

The fully developed two-cell state, which is the primary solution for this geometry, 
has the same symmetries as the entire apparatus: no symmetry has been broken. The 
transition to a fully developed four-cell state does not break symmetry either. When 
travelling waves develop from steady four-cell flow, the time symmetry is broken by a 
Hopf bifurcation, leading to time-periodic solutions. At the same time the rotational 
symmetry is broken. A travelling wave is characterized by mixed spatio-temporal 
symmetry: the flow field is invariant over a rotation, combined with a translation in 
time by a corresponding amount, which is determined by the wave speed. Because this 
spatio-temporal symmetry makes space and time interchangeable, the spatial structure 
of the flow in this region can be determined by investigating the time-periodic flow 
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field at an arbitrary position in the fully developed wave region. The temporal flow 
structure was represented by the amplitude and phase distributions in the previous 
section. 

Since the apparatus has reflect symmetry in the centreplane (z = 0), reflection of 
the travelling wave in the centreplane must produce either the same solution or a 
different, but also valid, solution. There are two different periodic travelling wave 
solutions that meet this requirement: the sinuous mode and the varicose mode. The 
varicose mode is symmetric in the centreplane, while the sinuous mode is shift-and- 
reflect symmetric. It is clear from the flow visualization in $3 that the flow field is not 
symmetric in the centreplane. The observed travelling wave state must therefore have 
shift-and-reflect symmetry. All measured amplitude and phase distributions confirm 
this shift-and-reflect symmetry. 

Because space and time are interchangeable, a spatial shift is equivalent to a 
temporal shift of a corresponding amount. The symmetry conditions of the travelling 
wave state are therefore given by: 

(6.1) 1 
u,(r, 0, z ,  t )  = u,(r, 8 + L/2, -z ,  t )  = ur(r, 8,  -z, t - T/2 ) ,  

ug(r, 8 ,  z ,  t )  = ue(r,  8 + L/2,  -z, t )  = ue(r, 8 ,  -z, t - T/2 ) ,  

u z ( r ,  O,Z, t )  = -vz(r, 8 + A/2, -z, t )  = -uz(r, 8, -z, t - T/2 ) ,  

where 1- is the wavelength and T the period of the oscillations. 
The fact that the amplitude of the fundamental at the centreline is zero follows 

directly from the shift-and-reflect symmetry: because the streamwise velocity at the 
centreline is unaffected by the reflection, the streamwise velocity profile in the centre 
is periodic over half a fundamental wavelength, and consequently has no fundamental 
component. 

6.3. Simulation results 

Because the simulation results are in very good agreement with the measured am- 
plitude and phase distributions of both the streamwise and spanwise velocity, it is 
expected that other simulation results also give an accurate description of the actual 
flow field, even though the phenomena are probably under resolved. In this section 
we will present simulation results of quantities that cannot easily be measured ex- 
perimentally, such as the vorticity. These results provide additional information on 
the structure of the flow field and will also be used for qualitative guidance as to the 
instability mechanism. 

Cross-section arrow plots over half a wavelength of the oscillations are given in 
figure 10. Because of the travelling wave character of the flow, these plots can either 
be interpreted as the temporal evolution at a fixed position, or the spatial variation 
at a fixed moment in time. The oscillation of the inflow region between the Dean 
vortices, which was observed in the flow visualization (figure 3 ) ,  is clearly visible in 
these arrow plots. 

Contour plots of the streamwise vorticity are shown in figure 11. There are only 
four vortical structures in the flow: two Ekman vortices and two Dean vortices. 
The other streamwise vorticity is associated with shear layers along the walls. Close 
examination of the streamwise vorticity shows that the vortices perform an approx- 
imately circular motion during the oscillations, very similar to that observed in the 
flow visualization. This circular motion gives the Dean vortices an approximately 
helical shape. Although a direct comparison with the experiment is not possible, 
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i = 2  i = 3  

FIGURE 10. Arrow plots of the secondary velocity for t = T(i/16) or 8 = i(l - i/16). Dn = 220, 
A. = 3.8". 

i = O  i= 1 i = 2  i = 3  

i = 4  i = 5  i = 6  i=l 

FIGURE 11. Streamwise vorticity plots in an (r,z)-plane for t = T(i/16) or 8 = i( l  - i/16). 
Dn = 220, 1 = 3.8". 

simulated streamwise vorticity and arrow plots show good qualitative agreement with 
the cross-section flow visualization of figure 3.  

Contour plots of all velocity components in both the (r,z)- and the (8,z)-planes 
are shown in figure 12. The streamwise velocity is more than an order of magnitude 
higher than the secondary velocities. 

Contour plots of the radial vorticity in the (r,z)-plane and the radial vorticity and 
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Streamwise velocity, v 0  Radial velocity, v, Spanwise velocity, vz 

FIGURE 12. Velocity contour plots in the (r,z)-plane (a-c) and (0,z)-plane (&f). Dn = 220, 1 = 3.8". 
For (d-fl, x = 0.27. 

Radial vorticity, w, Radial vorticity, o, Radial diff. vort. o, 

FIGURE 13. Radial vorticity and difference vorticity contour plots in the (r,z)-plane (a )  and 
(0,z)-plane (b, c). Dn = 220, /2 = 3.8", x = 0.27. 

the radial vorticity difference in the (U,z)-plane are shown in figure 13. Difference 
vorticity was defined as the vorticity field of the steady four-cell flow, subtracted from 
the vorticity field of the travelling wave state. There are regions with high radial 
vorticity on each side of the inflow region. This radial vorticity is associated with the 
spanwise inflectional profiles of the streamwise velocity. The radial vorticity near the 
top and the bottom walls is the result of the spanwise gradients of the streamwise 
velocity in those regions. The travelling wave state affects the radial vorticity much 
more strongly than the streamwise and spanwise vorticity fields. 

A contour plot of the amplitude of the total streamwise velocity fluctuations is given 
in figure 14. There are two regions with high streamwise velocity oscillations, one on 
each side of the inflow region. Contours of the spanwise and radial gradients of the 
strcamwise velocity of steady four-cell flow are also shown in figure 14. The regions 
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(b) (c) 

FIGURE 14. Amplitude of streamwise velocity fluctuations (a)  and gradients of the streamwise 
velocity of steady two-dimensional four-cell flow (b,c) in an (r,z)-plane. Dn = 220, 2 = 3.8". 

with high streamwise velocity fluctuations correspond to high spanwise gradients of 
the streamwise velocity. 

This correlation between high spanwise gradients of the streamwise velocity and 
high streamwise velocity fluctuations is easily explained by examining how the span- 
wise velocity profile varies with time. The spanwise profile of the streamwise velocity 
at x = 0.27 during steady four-cell flow, simulated CFDS-FLOW~D, is shown in fig- 
ure 15. The low velocity in the centre is due to the inflow region. Also shown are 
the spanwise profiles during the travelling wave state. The centre region with low 
streamwise velocity oscillates in the spanwise direction, while the shape of this centre 
region remains almost unchanged. 

A simple model that explains the qualitative features of the measured amplitude 
and phase distributions is based on the assumption that the spanwise profile of 
the streamwise velocity does not change shape during the oscillations; the V-shaped 
centre region simply oscillates in the spanwise direction. The amplitude of the velocity 
fluctuations, induced by this oscillating profile, can then be determined from the shape 
of the spanwise velocity profile. Fluctuations at the fundamental frequency are, as 
a first approximation, proportional to the spanwise derivative of this profile and to 
the distance over which this profile oscillates in the spanwise direction (Az). It can 
also be shown that the oscillations at the first harmonic frequency are, to a first 
approximation, proportional to the second derivative of the spanwise velocity profile, 
and to (Az)'. 

The first two derivatives of the spanwise velocity profile of the streamwise velocity 
are shown in figure 16. The shapes of the derivatives agree remarkably well with the 
amplitude distributions from figure 6(b). The phase of the oscillations is related to 
the sign of the different derivatives. This simple model predicts phase jumps each 
time the amplitude is zero: in the centre for the fundamental and at z = k0.05 for 
the first harmonic. This is in qualitative agreement with the phase distributions in 
figures 7 ( b )  and 8 (b).  

Streamwise velocity fluctuations could also be the result of radial oscillations of the 
velocity profile, but the radial profile changes very little as a result of the travelling 
waves. Consequently, streamwise velocity fluctuations induced by radial oscillations 
are small compared to those induced by spanwise oscillations. 
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FIGURE 15. Simulated spanwise profiles of streamwise velocity in steady (a) and wavy ( b )  four-cell 
flow. Dn = 220, 1 = 3.8", x = 0.21. 
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FIGURE 16. Derivatives of the spanwise profile of the streamwise velocity for steady four-cell flow. 
Dn = 220, 1 = 3.8", x = 0.21. 

6.4. Similarities with other systems 

6.4.1. Curved geometries 

The travelling waves presented here show qualitative similarity with twisting waves 
in curved channel flow and the sinuous mode of wavy Gortler vortices. Twisting vor- 
tices in a curved channel were first observed experimentally by Kelleher et al. (1980) 
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and later simulated by Finlay et al. (1987, 1988). The arrow plots of secondary flow 
patterns of twisting waves in Finlay’s et al. (1988) figure 16 are very similar to the 
ones in figure 10. In both cases the Dean vortices oscillate in the radial and spanwise 
directions and their strength fluctuates strongly. The inflow region oscillates in the 
spanwise direction, but the stagnation point near the outer wall does not move. Also, 
Finlay’s plots of the radial and spanwise velocity in the (r,z)-plane (Finlay et al. 1987) 
are very similar to those in figures 12 ( b )  and 12 (c) .  

Two modes of wavy Gortler vortices have been observed: a varicose mode and a 
sinuous mode. The streamwise wavelengths of both modes are close to the spanwise 
wavelength. Swearingen & Blackwelder (1987) investigated experimentally the sinuous 
mode and found two regions with high streamwise oscillations, corresponding to high 
spanwise gradients of the streamwise velocity. The simulation results in figure 14 show 
a very similar correlation for wavy duct flow. Yu & Liu (1991) and Liu & Domaradzki 
(1993) found comparable results for simulated sinuous Gortler vortices. The simple 
model, which was used in $6.3 to explain the qualitative features of amplitude and 
phase distributions, forms a direct connection between high streamwise velocity 
fluctuations and high spanwise shear. 

Swearingen & Blackwelder (1987) measured velocity fluctuations at different span- 
wise locations that show the same characteristics as the ones in figure 6(c,e,g). They 
also measured spanwise profiles of the streamwise velocity and observed a spanwise 
oscillation of the low-speed inflow region, very much like the simulated profiles in 
figure 15. 

Liu & Domaradzki simulated the transition to turbulence in Gortler flow. Their 
contour plots of all three velocity components in a (0,z)-plane of the sinuous mode 
of wavy Gortler vortices (before the transition to turbulence) are very similar to the 
contour plots in figure 12 (d-f) .  

All available experimental and numerical work on wavy flows in curved channels 
and the Gortler problem suggests that the wavy Dean vortices in a curved square 
duct, twisting waves in a curved channel, and the sinuous mode of wavy Gortler 
vortices are different manifestations of the same phenomenon. 

6.4.2. Two-dimensional wakes 
This is the first study of wavy vortex flows in curved geometries that uses amplitude 

and phase distributions to characterize the structure of the flow. However, those 
distributions are commonly used to describe oscillating flow phenomena in two- 
dimensional wakes. It turns out that the amplitude and phase distributions of wavy 
curved duct flow are very similar to those of sinuous oscillations in a wake. 

The first detailed experimental investigation of oscillations in the wake behind a flat 
plate was performed by Sat0 & Kuriki (1961), followed by many other experimental 
and numerical studies. Some studies focus on the structure of the oscillating flow, and 
the instability mechanism (Sato & Kuriki 1961; Mattingly & Criminale 1972), other 
studies focus more on mode interaction and the effect of forcing (Williams-Stuber & 
Gharib 1990; Williams, Mansy & Amato 1992). 

Amplitude and phase distributions of both streamwise and spanwise velocity fluc- 
tuations have been used by many researchers to characterize the flow (Sato & Kuriki 
1961; Sat0 1970; Mattingly & Criminale 1972; Wygnanski, Champagne & Marasli 
1986; Gharib & Williams-Stuber 1989; Marasli, Champage & Wygnanski 1989, 1992; 
Mansy & Williams 1991; Corke, Krull & Ghassemi 1992; Maekawa, Mansour & 
Buell 1992; Williams et al. 1992). The amplitude and phase distributions of the 
sinuous mode are generally very similar to the distributions presented here. 
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This similarity can easily be explained by considering the shape of spanwise profiles 
of the streamwise velocity. In both cases, these profiles have a V-shaped minimum 
near the plane of symmetry and the oscillating modes are characterized by a spanwise 
oscillation of this low-speed region, producing amplitude and phase distributions that 
are explained by our simple model. The radial vorticity field of the travelling wave 
state (figure 13) is very similar to the vorticity field of a developing vortex street 
(Abernathy & Kronauer 1962; Aref & Siggia 1981; Wygnanski et al. 1986). 

7. Instability mechanism 
A rigorous stability analysis of two-dimensional four-cell flow in a curved square 

duct to three-dimensional perturbations is not available in the existing literature, 
nor was it performed in the present study. However, stability analyses have been 
performed in other curved geometries, and also for two-dimensional wakes. 

The instability mechanism for twisting waves in a curved channel was first studied 
by Finlay et al. (1988). They used an Orr-Sommerfeld analysis to calculate the 
stability of spanwise profiles of the streamwise velocity. Their results suggest that 
twisting waves are the result of a shear instability. The inflection points of the 
spanwise profiles play an important role in this shear instability. 

A similar analysis was used by Le Cunff & Bottaro (1993) to study the stability of 
both spanwise and radial velocity profiles. They also found the twisting waves to be 
the result of a shear instability of spanwise inflectional profiles. The sinuous mode is 
always more unstable than the varicose mode. 

Swearingen & Blackwelder (1987) found a strong correlation between the regions of 
high velocity fluctuations and high spanwise shear for the sinuous mode of oscillating 
Gortler vortices, and suggest that the oscillations are the result of an unstable velocity 
profile in the spanwise direction. 

The V-shaped streamwise velocity profile of a two-dimensional wake is also unstable 
to a shear instability. It is this shear instability that causes the redistribution of the 
crosswise vorticity that leads to a von Karman vortex street. 

The inflectional spanwise velocity profiles in four-cell curved duct flow are very 
similar to those in curved channel flow, Gortler flow, and two-dimensional wakes. 
This similarity suggests that in a curved square duct also, the vortex oscillations are 
the result of a shear instability of spanwise inflectional profiles of the streamwise 
velocity. This instability mechanism indicates that the four-cell flow does not directly 
lead to travelling waves. Instead, the four-cell flow creates a streamwise velocity 
profile that is unstable to a secondary shear instability. It is this secondary instability 
that causes the transition to travelling waves. This qualitative information might be 
useful in any future three-dimensional stability analysis of curved duct flows. 

8. Conclusions 
Detailed experiments and numerical simulations of a fully developed travelling 

wave state in a curved duct of square cross-section were reported. This flow state has 
not been observed before. Experimentally the waves were observed at Dean numbers 
between 170 and 260, which is consistent with Winters’ (1987) observation that no 
stable two-dimensional solutions exist above a Dean number of 131. In order to 
predict the onset of these travelling waves, a stability analysis of two-dimensional 
solutions to three-dimensional and time-dependent disturbances would have to be 
performed. 
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The experiments suggest that the travelling waves are the result of a convective 
instability of steady four-cell flow. In the experiments, the destabilizing disturbances 
were created by a pin that was inserted along the horizontal centreline, z = 0, at 
0 = 5", but it seems likely that in a longer duct the travelling wave state will develop 
spontaneously, induced by random disturbances. The convective nature of the flow 
was confirmed by the fact that the wave locks in to an imposed periodic disturbance. 

Measured amplitude and phase distributions show that the flow has shift-and- 
reflect symmetry. These distributions, as well as the flow visualization, are in good 
agreement with streamwise-periodic simulations using CFDS-FLOW~D. As a result of 
the inflow region between the Dean vortices, the spanwise profiles of the streamwise 
velocity near the outer wall have a V-shaped minimum in the centre. During the 
travelling wave state, this V-shaped centre region oscillates in the spanwise direction, 
while its shape remains almost unchanged. A simple model that is based on the 
assumption that the spanwise profile does not change shape while oscillating explains 
all qualitative features of the amplitude and phase distributions. 

The structure of the travelling waves in a curved square duct is very similar to that 
of twisting vortices in a curved channel and sinuous oscillations of Gortler vortices. 
Several authors have shown that twisting vortices are the result of a shear instability 
of spanwise inflectional velocity profiles. The waves also show similarities with a 
developing vortex street in a two-dimensional wake, which is the result of a shear 
instability. These similarities suggest that the travelling waves in a curved duct are 
also caused by a spanwise shear instability. 
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